The interior angles of a quadrilateral are (x + 15)°,...
The interior angles of a quadrilateral are (x + 15)°, (2x - 45)°, ( x - 30)° and (x + 10)°. Find the value of the least interior angle.
112o
102o
82o
52o
Correct answer is D
(x + 15)° + (2x - 45)° + (x + 10)° = (2n - 4)90°
when n = 4
x + 15° + 2x - 45° + x - 30° + x + 10° = (2 x 4 - 4) 90°
5x - 50° = (8 - 4)90°
5x - 50° = 4 x 90° = 360°
5x = 360° + 50°
5x = 410°
x = \(\frac{410^o}{5}\)
= 82°
Hence, the value of the least interior angle is (x - 30°)
= (82 - 30)°
= 52°
If K is a constant, which of the following equations best describes the parabola? ...
Simplify: \(\frac{54k^2 - 6}{3k + 1}\)...
Solve the equation: \(\frac{1}{3}x\) + \(\frac{2}{5}\) = \(\frac{3}{4}x\) - \(\frac{1}{6}\)...
Simplify \(\frac{4}{2x} - \frac{2x + x}{x}\)...
Simplify: (\(\frac{3}{4} - \frac{2}{3}\)) x 1\(\frac{1}{5}\)...
If \(\frac{2 \sqrt{3} - \sqrt{2}}{\sqrt{3} + 2 \sqrt{2}}\) = m + n √ 6, find the values of m an...
The area of a parallelogram is 513cm\(^2\) and the height is 19cm. Calculate the base....