3 \(\leq\) x \(\leq\) 4
3 < x < 4
3 \(\leq\) x < 4
3 < x \(\leq\) 4
Correct answer is A
(x - 3)(x - 4) \(\leq\) 0
Case 1 (+, -) = x - 3 \(\geq\) 0, X - 4 \(\geq\) 0
= X \(\leq\) 3, x \(\geq\) 4
= 3 < x \(\geq\) 4 (solution)
Case 2 = (-, +) = x - 3 \(\leq\) 0, x - 4 \(\geq\) 0
= x \(\leq\) 3, x \(\geq\) 4
therefore = 3 \(\leq\) x \(\leq\) 4
Simplify (6 - x - x2) ÷ (x2 - 4) ...
Evaluate (Log13 - log5) ÷ X(log5-log13) without using tables...
In the figure, find the value of x ...
Find the minimum value of X2 - 3x + 2 for all real values of x...
If \(\frac{2 \sqrt{3} - \sqrt{2}}{\sqrt{3} + 2 \sqrt{2}}\) = m + n √ 6, find the values of m an...
If a = 3 and b = -7, find the value of \(\frac{5b+(a+b)^2}{(a-b)^2}\)...