\(\frac{28}{39}\)
\(\frac{13}{39}\)
\(\frac{39}{28}\)
\(\frac{84}{13}\)
Correct answer is A
\(\frac{1}{3} \div [\frac{5}{7}(\frac{9}{10} -1 + \frac{3}{4})]\)
\(\frac{1}{3} \div [\frac{5}{7}(\frac{9}{10} - \frac{10}{10} + \frac{3}{4})]\)
= \(\frac{1}{3} \div [\frac{5}{7}(\frac{-1}{10} + \frac{3}{4})]\)
= \(\frac{1}{3} \div [\frac{5}{7}(\frac{-2 + 15}{20})]\)
= \(\frac{1}{3} \div [\frac{5}{7} \times \frac{13}{20}]\)
\(\frac{1}{3} + [\frac{13}{28}]\) = \(\frac{1}{3} \times \frac{28}{13}\)
= \(\frac{28}{39}\)
If \(\begin{vmatrix} 2 & -4 \\ x & 9 \end{vmatrix} = 58\), find the value of x....
If \(y \propto \frac{1}{x^2}\) and x = 3 when y = 4, find y when x = 2....
The number line represented by the inequality ...
In the diagram above, find x correct to the nearest degree ...
Find the median of the numbers 89, 141, 130, 161, 120, 131, 131, 100, 108 and 119 ...