-7\(\frac{7}{8}\)
\(\frac{-2}{7}\)
\(\frac{-10}{21}\)
\(\frac{10}{21}\)
Correct answer is B
\(\frac{4\frac{3}{4} - 6\frac{1}{4}}{4\frac{1}{5} \text{ of } 1\frac{1}{4}}\)
\(\frac{19}{4}\) - \(\frac{25}{4}\)............(A)
\(\frac{21}{5}\) x \(\frac{5}{4}\).............(B)
Now work out the value of A and the value of B and then find the value \(\frac{A}{B}\)
A = \(\frac{19}{4}\) - \(\frac{25}{4}\)
= \(\frac{-6}{4}\)
B = \(\frac{21}{5}\) x \(\frac{5}{4}\)
= \(\frac{105}{20}\)
= \(\frac{21}{4}\)
But then \(\frac{A}{B}\) = \(\frac{-6}{4}\) \(\div\) \(\frac{21}{4}\)
= \(\frac{-6}{4}\) x \(\frac{4}{21}\)
= \(\frac{-24}{84}\)
= \(\frac{-2}{7}\)
Simplify \(\sqrt{\frac{(0.0023 \times 750)}{(0.00345 \times 1.25)}}\) ...
If x% of 240 equals 12, find x ...
Which of the following binary operations is cumulative on the set of integers?...
Find the coordinates of point B ...
The values of x when y = -1 are approximately ...
Simplify \(\frac{3}{5} \div \left(\frac{2}{7} \times \frac{4}{3} \div \frac{4}{9}\right)\) ...