\(\sqrt{\frac{-b \pm b^2 - 4ac}{2a}}\)
\(\frac{-b \pm \sqrt{ p^2 - 4pb}}{2a}\)
\(\frac{-q \pm \sqrt{ q^2 - 4bp}}{2p}\)
\(\frac{-q \pm \sqrt{ p^2 - 4bp}}{2p}\)
Correct answer is C
px2 + qx + b = 0
Using almighty formula
\(\frac{-b \pm \sqrt{ b^2 - 4ac}}{2a}\).........(i)
Where a = p, b = q and c = b
substitute for this value in equation (i)
= \(\frac{-q \pm \sqrt{ q^2 - 4bp}}{2p}\)
Find the volume (in cm\(^3\)) of the solid shown above...
Find the value of k such that \(t^2\) + kt + \(\frac{25}{4}\) is a perfect square...
Simplify \(\frac{2-18m^2}{1+3m}\)...
The nth term of the sequence 3/2, 3, 7, 16, 35, 74 ..... is...
Factorize \(x^2 + 2a + ax + 2x\)...
For what value of x is the expression x - 5/x2 - 2x - 3 not defined?...
Evaluate \(\frac{8^{\frac{1}{3}} \times 5^{\frac{2}{3}}}{10^{\frac{2}{3}}}\) ...