\(\frac{1}{y}\)(x2 + y2)
\(\frac{x}{y}\)
\(\frac{1}{y}\)\(\sqrt{x^2 + y^2}\)
\(\frac{x - y}{y}\)
Correct answer is C
\(\cot \theta = \frac{x}{y}\)
\(\implies \tan \theta = \frac{y}{x}\)
\(opp = y; adj = x\)
Using Pythagoras theorem, \(Hyp^{2} = Opp^{2} + Adj^{2}\)
\(Hyp^{2} = y^{2} + x^{2}\)
\(Hyp = \sqrt{y^{2} + x^{2}}\)
\(\sin \theta = \frac{y}{\sqrt{y^{2} + x^{2}}}\)
\(\therefore \csc \theta = \frac{\sqrt{y^{2} + x^{2}}}{y}\)
= \(\frac{1}{y}(\sqrt{y^{2} + x^{2}})\)
Simplify \(\frac{(√12-√3)}{(√12+√3)}\) ...
Factorize \( x^2 − 2x − 15 \)...
Given that \(\sqrt{2} = 1.414\), find without using tables, the value of \(\frac{1}{\sqrt{2}}\)...
Find the area of the sector of a circle with radius 3m, if the angle of the sector is 60o...
The marks scored by 30 students in a Mathematics test are recorded in the table below: Scores...
In diagram above, QR//TU, < PQR = 80° and < PSU = 95°. Calculate < SUT. ...