y = \(\frac{1}{(Z - x^2)^3}\)
y = \(\frac{1}{(Z + x^2)^{\frac{1}{3}}}\)
y = \(\frac{1}{(Z - x^2)^{\frac{1}{3}}}\)
y = \(\frac{1}{\sqrt[3]{Z} - \sqrt[3]{x^2}}\)
Correct answer is C
Z = x\(^2\) + \(\frac{1}{y^3}\)
Z - x\(^2\) = \(\frac{1}{y^3}\)
y\(^3\) = \(\frac{1}{Z - x^2}\)
y = \(\sqrt[3]{\frac{1}{Z - x^2}}\)
∴ y = \(\frac{1}{\sqrt[3]{Z - x^2}}\)
y = \(\frac{1}{(Z - x^2)^{\frac{1}{3}}}\)
Simplify \(\frac{3(2^{n+1}) - 4(2^{n-1})}{2^{n+1} - 2^n}\) ...
If P = \(\frac{2}{3}\) (\(\frac{1 - r^2}{n^2}\)), find n when r = \(\frac{1}{3}\) and p = 1...
Find the values of x and y respectively if \(\begin{pmatrix} 1 & 0 \\ -1 & -1\\ 2 & 2 \...
Simplify 2\(\frac{5}{12}\) - 1\(\frac{7}{8}\) x \(\frac{6}{5}\)...
Find the probability that a number selected at random from 21 to 34 is a multiple of 3...
Factorize completely the expression \(abx^2 + 6y - 3ax - 2byx\)...