\(\frac{-3}{9}\)
\(\frac{-3}{2}\)
\(\frac{6}{11}\)
\(\frac{43}{78}\)
Correct answer is B
\(\frac{\log_{3} 27 - \log_{\frac{1}{4}} 64}{\log_{3} (\frac{1}{81})}\)
\(\log_{3} 27 = \log_{3} 3^{3} = 3\log_{3} 3 = 3\)
\(\log_{\frac{1}{4}} 64 = \log_{\frac{1}{4}} (\frac{1}{4})^{-3} = -3\)
\(\log_{3} (\frac{1}{81}) = \log_{3} 3^{-4} = -4\)
\(\therefore \frac{\log_{3} 27 - \log_{\frac{1}{4}} 64}{\log_{3} (\frac{1}{81})} = \frac{3 - (-3)}{-4}\)
= \(\frac{6}{-4} = \frac{-3}{2}\)
Find the value of t in the diagram above ...
Convert 2232\(_4\) to base six ...
A circular arc subtends angle 150° at the centre of a circle of radius 12cm. Calculate the ...
Solve for a positive number x such that \(2^{(x^3 - x^2 - 2x)} = 1\)...
Convert 101101two to a number in base ten...
Integrate \(\int_{-1} ^{2} (2x^2 + x) \mathrm {d} x\)...
In the diagram, RT is a tangent to the circle at R, < PQR = 70\(^o\), < QRT = 52\(^o\), < Q...