\(\frac{1}{p - q}\)
\(\frac{1}{q - 1}\)
\(\frac{1}{q + 1}\)
1 + 0
\(\frac{1}{1 - q}\)
Correct answer is C
Pq + 1 = q2......(i)
t = \(\frac{1}{p}\) - \(\frac{1}{pq}\).........(ii)
p = \(\frac{q^2 - 1}{q}\)
Sub for p in equation (ii)
t = \(\frac{1}{q^2 - \frac{1}{q}}\) - \(\frac{1}{\frac{q^2 - 1}{q} \times q}\)
t = \(\frac{q}{q^2 - 1}\) - \(\frac{1}{q^2 - 1}\)
t = \(\frac{q - 1}{q^2 - 1}\)
= \(\frac{q - 1}{(q + 1)(q - 1)}\)
= \(\frac{1}{q + 1}\)
Find the value of k if y - 1 is a factor of y3 + 4y2 + ky - 6...
Simplify \((216{\frac{1}{3}})^{-2}\)...
Multiply (x + 3y + 5) by (2x2 + 5y + 2)...
Evaluate Cos 45o Cos 30o - Sin 45o Sin 30o leaving the answer in surd form...
Simplify 3\(\sqrt{27x^3y^9}\)...
In diagram, PQ || ST and < PQR = 120o, < RST = 130o, find the angle marked x ...
A trader makes a loss of 15% when selling an article. Find the ratio, selling price : cost price ...