\(\frac{4pq}{m(p + q)}\)
\(\frac{2p^2q^2}{m(q^2 + p^2)}\)
\(\frac{2pq}{m(q^2 + p^2)}\)
\(\frac{2p^2q^2}{m(p^2)}\)
Correct answer is B
\(\frac{1}{p^2}\) + \(\frac{1}{q^2}\) = \(\frac{q^2 + p^2}{p^2 + q^2}\)
\(\frac{\frac{2}{x}}{\frac{p^2 + q^2}{p^2 q^2}}\)
m = \(\frac{2p^2q^2}{x(p^2 + q^2)}\)
= m2p2q2 = m x (p2 + q2)
x = \(\frac{2p^2q^2}{m(q^2 + p^2)}\)
Solve the equations: 4x -y = 11; 5x + 2y = 4. ...
if \(\frac{4m+3n}{4m-3n}=\frac{5}{2}\), find the ratio m:n...
In the diagram, ∠PMN = ∠PRQ and ∠PNM = ∠PQR. If /Pm/ = 3cm, /MQ/ = 7cm and /PN/ = 5c...
If y = 3 sin(-4x), dy/dx is ...
Evaluate \(1011_{two}\) + \(1101_{two}\) + \(1001_{two}\) - \(111_{two}\)...