zero
\(\frac{1}{5}\)
1
2
Correct answer is A
Given; x = 2; y = \(\frac{-1}{4}\)
= \(\frac{x^2y - 2xy}{5}\)
= \(\frac{2^2(\frac{-1}{4}) - 2(2)(\frac{-1}{4})}{5}\)
= \(\frac{4(\frac{-1}{4}) + 4(\frac{-1}{4})}{5}\)
= \(\frac{1 + 1}{5}\)
= \(\frac{0}{5}\)
= 0
Make T the subject of the equation \(\frac{av}{1 - v}\) = \(\sqrt{\frac{2v + T}{a + 2T}}\)...
If m * n = n - (m+2) for any real number m and n find the value of 3*(-5)? ...
Given that tan x = 1, where 0o \(\geq\) x 90o, evaluate \(\frac{1 - \sin^2 x}{\cos x}\)...
Find the locus of point equidistant from two straight lines y - 5 = 0 and y - 3 = 0 ...
If x% of 240 equals 12, find x ...
In the figure, STQ = SRP, PT = TQ = 6cm and QS = 5cm. Find SR ...