\(\frac{1}{\sqrt{r}}\)
\(\sqrt{r}\)
\(\sqrt{r^2 + 1}\)
\(\sqrt{r^2 - 1}\)
Correct answer is D
cos xo = \(\frac{1}{r}\); \(\sqrt{r^2 - 1}\)
By Pythagoras r2 = 12 + x2 - 1
x = \(\sqrt{r^2 - 1}\)
tan xo = \(\sqrt{r^2 - 1}\)
= \(\sqrt{r^2 - 1}\)
Simplify: (3\(\frac{1}{2} + 4\frac{1}{3}) \div (\frac{5}{6} - \frac{2}{3}\))...
Differentiate \(\frac{2x}{\sin x}\) with respect to x....
Given that m = -3 and n = 2 find the value of \(\frac{3n^2 - 2m^3}{m}\)...
Express \(\frac{2}{x + 3} - \frac{1}{x - 2}\) as a simple fraction...