\(\frac{1}{\sqrt{r}}\)
\(\sqrt{r}\)
\(\sqrt{r^2 + 1}\)
\(\sqrt{r^2 - 1}\)
Correct answer is D
cos xo = \(\frac{1}{r}\); \(\sqrt{r^2 - 1}\)
By Pythagoras r2 = 12 + x2 - 1
x = \(\sqrt{r^2 - 1}\)
tan xo = \(\sqrt{r^2 - 1}\)
= \(\sqrt{r^2 - 1}\)
Which of the following is a factor of rs + tr - pt - ps? ...
Find the matrix A A \(\begin {bmatrix} 0 & 1\\2 & -1 \end {bmatrix}\) = \(\begin {bmat...
Evaluate (212)3 - (121)3 + (222)3...
Make x the subject of the equation s = 2 + \(\frac{t}{5} \)(x + ⅗y)...