150o
110o
100o
95o
Correct answer is C
L + 30o - 180o(Sum of < s on straight line)
L = 180o - 30o = 150o
L = q = 150o(opposite < s are equal)
y = b = 30o(alt. < s)
b + c = 180o(sum of < s on str. line)
30o + c 180
c = 180 - 30
c = 150o
b = a = 30o (opp < s are equal)
c = d = 150o (opp < s are equal)
a + k + 70o = 180o (sum of < s on △)
30o + k + 70o = 180
k + 100o = 180
k = 180 - 100
k = 80o
x + 80o = 180(sum of < s on straight line)
x = 180o - 80o
x = 100o
Solve the equations m2 + n2 = 29 m + n = 7 ...
Two triangles have the same areas if ...
If m * n = n - (m+2) for any real number m and n find the value of 3*(-5)? ...
Simplify 0.026×0.360.69. Leave your answer in standard form ...
Find the value of t such that the expression 1t + 43 - 56t + ...