\(\sqrt{\frac{(b^2 - a^2)}{(s^2 - x^2)}}\)
\(\sqrt{\frac{(b^2 - a^2)}{(s^2 \times 2)}}\)
\(\sqrt{\frac{x^2 - a^2 - b^2}{s}}\)
\(\frac{x^2 - a^2 - b^2}{s}\)
\(\sqrt{\frac{(b^2 x^2)}{(a^2 - s^2 x^2)}}\)
Correct answer is E
s = \(\sqrt{(\frac{a^2}{x^2} - \frac{b^2}{y^2})}\)
s\(^2\) = \(\frac{a^2}{x^2} - \frac{b^2}{y^2}\)
\(\frac{b^2}{y^2}\) = \(\frac{a^2}{x^2}\) - s\(^2\)
\(\frac{b^2}{y^2}\) = \(\frac{a^2 - s^2 x^2}{x^2}\)
\(\frac{1}{y^2}\) = \((\frac{a^2 - s^2 x^2}{x^2}) \times \frac{1}{b^2}\)
\(\frac{1}{y^2}\) = \(\frac{a^2 - s^2 x^2}{b^2 x^2}\)
\(\therefore\) y\(^2\) = \(\frac{b^2 x^2}{a^2 - s^2 x^2}\)
y = \(\sqrt{\frac{b^2 x^2}{a^2 - s^2 x^2}}\)
In the diagram, O is the centre of the circle where OS//QR and ∠SOR = 35o...
The table below gives the distribution of marks obtained by a number of pupils in a class test. T...
In the figure, WU//YZ, WY//YZ = 12cm, VZ = 6cm, XU = 8cm. Determine the length of WU. ...
The difference between the length and width of a rectangle is 6cm and the area is 135cm². What ...
A house bought for N100,000 was later auctioned for N80,000. Find the loss percent. ...