\(\frac{111}{13}\)
\(\frac{321}{65}\)
-\(\frac{216}{65}\)
\(\frac{112}{13}\)
\(\frac{131}{65}\)
Correct answer is C
Given cos x = - \(\frac{5}{13}\)
→ adj = -5, hyp = 13
Pythagoras' rule → hyp\(^2\) = Opp\(^2\) + adj\(^2\)
Opp\(^2\) = 13\(^2\) - [-5]\(^2\) → 169 - 25
Opp = √144 → 12
tan x = \(\frac{opp}{adj}\) → - \(\frac{12}{5}\)
sin x = \(\frac{opp}{hyp}\) → \(\frac{12}{13}\)
; tan x - sin x → - \(\frac{12}{5}\) - \(\frac{12}{13}\)
= - \(\frac{216}{65}\)
Find the limit of y = \(\frac{x^3 + 6x - 7}{x-1}\) as x tends to 1...
Find the curved surface area of the frustrum in the figure ...
If the exterior angles of quadrilateral are yo, (y + 5)o, (y + 10)o and (y + 25)o, find y...
Simplify (1 + \(\frac{\frac{x - 1}{1}}{\frac{1}{x + 1}}\))(x + 2)...
Evaluate \(\frac{3\frac{1}{4} \times 1\frac{3}{5}}{11\frac{1}{3} - 5 \frac{1}{3}}\)...
In the diagram, O is the centre, \(\bar{RT}\) is a diameter, < PQT = 33\(^o\) and <TOS = 76\(^...