1, − 2
− 2, n = 1
\(\frac{-2}{5}\), 1
\(\frac{2}{3}\)
Correct answer is B
\(\frac{2 \sqrt{3} - \sqrt{2}}{\sqrt{3} + 2 \sqrt{2}}\)= m + n√6
\(\frac{2 \sqrt{3} - \sqrt{2}}{\sqrt{3} + 2 \sqrt{2}}\) x \(\frac{\sqrt{3} - 2 \sqrt{2}}{\sqrt{3} - \sqrt{2}}\)
\(\frac{2 \sqrt{3} (\sqrt{3} - 2 \sqrt{2}) - \sqrt{2}(\sqrt{3} - 2 \sqrt{2})}{\sqrt{3}(\sqrt{3} - 2 \sqrt{2}) + 2 \sqrt{2}(\sqrt{3} - 2 \sqrt{2})}\)
\(\frac{2 \times 3 - 4\sqrt{6} - 6 + 2 \times 2}{3 - 2 \sqrt{6} + 2 \sqrt{6} - 4 \times 2}\)
= \(\frac{6 - 4 \sqrt{6} - \sqrt{6} + 4}{3 - 8}\)
= \(\frac{0 - 4 \sqrt{6} - 6}{5}\)
= \(\frac{10 - 5 \sqrt{6}}{5}\)
= − 2 + √6
∴ m + n\(\sqrt{6}\) = − 2 + √6
m = − 2, n = 1
Simplify \(\frac{1}{x - 2}\) + \(\frac{1}{x + 2}\) + \(\frac{2x}{x^2 - 4}\)...
What will be the value of k so that the quadratic equation kx2 - 4x + 1 = 0 has two equal roots?...
The derivatives of (2x + 1)(3x + 1) is ...
In the diagram above, PQR is a circle centre O. If < QPR is x°, find < QRP. ...
Calculate the volume of the regular three dimensional figure drawn above, where < ABC = 90° (...
PQRS is a rhombus. If PR\(^2\) + QS\(^2\) = kPQ\(^2\), determine k....