12x−24x2
43x2−2x7x
4x2−27x+6
12x2−24x3−2x
Correct answer is D
ddx[log(4x3−2x)] ... (1)
Let u = 4x3 - 2x.
ddx(log(4x3−2x))=(ddu)(dudx)
ddu(logu) = 1u
dudx=12x2−2
∴
= \frac{12x^2 - 2}{4x^3 - 2x}
Simplify 81^{\frac{-3}{4}} x 25^{\frac{1}{2}} x 243^{\frac{2}{5}}...
From the diagram, find the bearing of Q from P....
Simplify \frac{\sqrt{8^2 \times 4^{n + 1}}}{2^{2n} \times 16}...
In the diagram above PS||RQ, |RQ| = 6.4cm and perpendicular PH = 3.2cm. Find the area of SQR ...
Given that P = x2 + 4x - 2, Q = 2x - 1 and Q - p = 2, find x...