3x\(^3\) - 4x\(^2\) - 14x + 12
3x\(^2\) + 3x - 7
3x\(^3\) + 4x\(^2\) + 14x - 12
3x\(^2\) - 3x + 4
Correct answer is A
Given q(x) [quotient], d(x) [divisor] and r(x) [remainder], the polynomial is gotten by multiplying the quotient and the divisor and adding the remainder.
i.e In this case, the polynomial = (x\(^2\) - x - 5)(3x - 1) + 7.
= (3x\(^3\) - x\(^2\) - 3x\(^2\) + x - 15x + 5) + 7
= (3x\(^3\) - 4x\(^2\) - 14x + 5) + 7
= 3x\(^3\) - 4x\(^2\) - 14x + 12
Find the mean of t + 2, 2t - 4, 3t + 2 and 2t....
If g(x) = x\(^2\) + 3x find g(x + 1) - g(x)...
Make R the subject of the fomula S = \(\sqrt{\frac{2R + T}{2RT}}\)...
If A = \(\begin{pmatrix} 2 & 1 \\ 2 & 3 \\ 1 & 2 \end{pmatrix}\...
Divide 4x3 - 3x + 1 by 2x - 1 ...
Evaluate \((20_{three})^2 - (11_{three})^2\) in base three...