3 \(\log_{10}^2\)
\(\log_{10}^2\)
\(\log_{10}^3\)
2 \(\log_{10}^3\)
Correct answer is B
log\(_{10}\) 6 - log\(_{10}\)3\(^3\) + log\(_{10}\) (\(\sqrt[3]{27}\))\(^2\)
= log \(_{10}\) 6 - log \(_{10}\) 27 + log\(_{10}\) 9
= log\(_{10}\) \(\frac{6 \times 9}{27}\)
= log\(_{10}\)2
Given that I3 is a unit matrix of order 3, find |I3|...
If 4\(^{3x}\) = 16\(^{x+1}\), find the value of x ...
Calculate the perimeter, in cm, of a sector of a circle of radius 8cm and angle 45o...
Simplify \((\frac{1}{\sqrt{5} + \sqrt{3}} - \frac{1}{\sqrt{5} - \sqrt{3}}) \times \frac{1}...