90º
30º
45º
60º
Correct answer is C
Given that sec\(^2\)θ + tan\(^2\)θ = 3
Where sec\(^2\)θ = 1 + tan\(^2\)θ
: 1 + tan\(^2\)θ + tan\(^2\)θ = 3
2tan\(^2\)θ = 3 - 1
2tan\(^2\)θ = 2
divide both sides by 2
tan\(^2\)θ = 1
tanθ = √1
tanθ = 1
θ = tan\(^{-1}\) (1)
θ = 45º
Find the root of the equation 2x\(^2\) - 3x - 2 = 0 ...
Given that = {x: -2 < x \(\leq\) 9}, where x is an integer what is n(T)?...
PQRT is square. If x is the midpoint of PQ, Calculate correct to the nearest degree, LPXS...
Solve the inequality -6(x + 3) \(\leq\) 4(x - 2)...