If D = \(\begin{bmatrix}2& -1&3\\4&1&2\\1...
If D = \(\begin{bmatrix}2& -1&3\\4&1&2\\1&-3&1\\\end{bmatrix}\)
Find |D|
16
14
-23
-37
Correct answer is C
\(\begin{bmatrix}2& -1&3\\4&1&2\\1&-3&1\\\end{bmatrix}\)
= 2[(1 x 1) - (2 x -3)] - (-1)[(4 x 1) - (2 x 1)] + 3[(4 x -3) - (1 x 1)]
= 2(1 - (-6)) + 1(4 - 2) + 3(-12 - 1)
= 2(1 + 6) + 1(2) + 3(-13)
= 2(7) + 1(2) + 3(-13)
= 14 + 2 - 39
∴ |D| = -23
In the figure, PQR is a semicircle while PQ and QR are chords. QS is the perpendicular fro...
Simplify 36\(^\frac{1}{2}\) x 64\(-^\frac{1}{3}\) x 5\(^0\) ...
Calculate the standard deviation of the following marks; 2, 3, 6, 2, 5, 0, 4, 2 ...
Solve for x in the equation; \(\frac{3}{5}\)(2x - 1) = \(\frac{1}{4}\)(5x - 3)...
p = \(\begin{vmatrix} x & 3 & 0 \\ 2 & y & 3\\ 4 & 2 & 4 \end{vmatrix}\) Q = \(\begin{vmatrix} x ...