\((2x - y)(2x + y)(4x^2 + y^2)\)
\((2x + y)(2x + y)(4x^2 + y^2)\)
\((2x - y)(2x - y)(4x^2 + y^2)\)
\((2x - y)(2x + y)(4x^2 - y^2)\)
Correct answer is A
16\(x^4 - y^4\)
= 2\(^4x^4 - y^4\)
= \((2x)^4 - y^4\)
= \(((2x)^2)^2 - (y^2)^2\)
Using a\(^2 - b^2\) = (a - b)(a + b) identity
= ((2x)\(^2 - y^2)((2x)^2 + y^2)\)
Using the identity one more time
= \((2x - y)(2x + y)((2x)^2 + y^2)\)
∴ \((2x - y)(2x + y)(4x^2 + y^2)\)
If \(6x^3 + 2x^2 - 5x + 1\) divides \(x^2 - x - 1\), find the remainder....
Find the quadratic equation whose roots are \(\frac{1}{2}\) and -\(\frac{1}{3}\) ...
Given that \(p = x-\frac{1}{x} and\hspace{1mm}q = x^2 + \frac{1}{x^2}\) express q in terms of p....
What is the n-th term of the sequence 2, 6, 12, 20...? ...
Solve the inequalities for which \(\frac{x+4}{3}-\frac{x-3}{2} < 4\) ...
Solve the following simultaneous equation for x. x2 + y - 5 = 0, y - 7x + 3 = 0...
The sixth term of an A.P is half of its twelfth term. The first term of the A.P is equal to ...