x = \(\sqrt[3] \frac{ax^3 - b}{3z}\)
x = \(\sqrt[3] \frac{3yz - b}{a}\)
x = \(\sqrt[3] \frac{3yz + b}{a}\)
x = \(\sqrt[3] \frac{3yzb}{a}\)
Correct answer is C
\(y = \frac{ax^3 - b}{3z}\)
cross multiply
\(ax^3 - b\) = 3yz
\(ax^3\) = 3yz + b
divide both sides by a
\(x^3 = \frac{3yz + b}{a}\)
take cube root of both sides
therefore, x = \(\sqrt[3] \frac{3yz + b}{a}\)
If \(P = \sqrt{QR\left(1+\frac{3t}{R}\right)}\), make R the subject of the formula....
IF the exterior angles of a quadilateral are yo, (2y + 5)o , (y + 15)o and (3y - 10)o, find yo...
Integrate \(\int_{-1} ^{2} (2x^2 + x) \mathrm {d} x\)...
A rectangle with width \(\frac{3}{4}\)cm and area 3 \(\frac{3}{8}\)cm\(^2\). Find the length...