\(\frac{2}{5}\)
\(\frac{5}{2}\)
\(\frac{2}{7}\)
\(\frac{7}{2}\)
Correct answer is A
Gradient(slope) m = \(\frac{ y_2 - y_1}{ x_2 - x_1}\)
the points are \((\frac{1}{2}, \frac{- 1}{3}) and ( 3 , \frac{2}{3})\)
m = \(\frac{\frac{2}{3} - (\frac{-1}{3})}{3 - \frac{1}{2}}\)
= \(\frac{\frac{2}{3} + \frac{1}{3}}{3 - \frac{1}{2}}\)
= \(1 \div\frac{5}{2}\) = \(1\times\frac{2}{5}\)
Therefore, m = \(\frac{2}{5}\)
Evaluate \(\int^{1}_{0}\)(3 - 2x)dx...
The nth term of the sequence 3, 9, 27, 81.....is ...
If \(\frac{2}{x - 3} - \frac{3}{x - 2}\) is equal to \(\frac{p}{(x - 3)(x - 2)}\), find p...
Calculate the value of y in the diagram...
If y = 2x2 + 9x - 35. Find the range of values for which y < 0....