\(-4\sqrt{3}\)
\(\frac{-4\sqrt{3}}{3}\)
\(\frac{-3\sqrt{3}}{4}\)
\(\frac{-3\sqrt{3}}{4}\)
Correct answer is B
\(a \Delta b\) = \(\frac{a+b}{\sqrt{ab}}\)
\(-3\Delta -1\) = \(\frac{-3 + -1}{\sqrt{-3\times -1}}\)
\(\frac{-4}{\sqrt{3}}\), rationalising, we have
\(\frac{-4 \times \sqrt{3}}{\sqrt{3}\times \sqrt{3}} = \frac{-4\sqrt{3}}{3}\)
Find the 21st term of the Arithmetic Progression (A.P.): -4, -1.5, 1, 3.5,... ...
Find \(\lim\limits_{x \to 3} \frac{2x^{2} + x - 21}{x - 3}\)....
If \(f(x) = 2x^{2} - 3x - 1\), find the value of x for which f(x) is minimum....
Simplify: \(\frac{\cos 2\theta - 1}{\sin 2\theta}\)...
A binary operation ♦ is defined on the set R, of real numbers by \(a ♦ b = \fr...