\(-4\sqrt{3}\)
\(\frac{-4\sqrt{3}}{3}\)
\(\frac{-3\sqrt{3}}{4}\)
\(\frac{-3\sqrt{3}}{4}\)
Correct answer is B
\(a \Delta b\) = \(\frac{a+b}{\sqrt{ab}}\)
\(-3\Delta -1\) = \(\frac{-3 + -1}{\sqrt{-3\times -1}}\)
\(\frac{-4}{\sqrt{3}}\), rationalising, we have
\(\frac{-4 \times \sqrt{3}}{\sqrt{3}\times \sqrt{3}} = \frac{-4\sqrt{3}}{3}\)
Find the unit vector in the direction of (-5i + 12j). ...
Given that \(y = x(x + 1)^{2}\), calculate the maximum value of y....
Given that F\(^1\)(x) = x\(^3\)√x, find f(x)...
If \(\begin{pmatrix} p+q & 1\\ 0 & p-q \end {pmatrix}\) = \(\begin{pmatrix} 2 & 1 ...
If \(\begin{vmatrix} 1+2x & -1 \\ 6 & 3-x \end{vmatrix} = -3 \), find the values of x....