0
1
7
13
Correct answer is D
\(\lim\limits_{x \to 3} \frac{2x^{2} + x - 21}{x - 3}\)
\(2x^{2} + x - 21 = 2x^{2} - 6x + 7x - 21 \) (by factorizing)
= \((2x + 7)(x - 3)\)
\(\therefore \lim\limits_{x \to 3} \frac{2x^{2} + x - 21}{x - 3} \equiv \lim\limits_{x \to 3} \frac{(2x+7)(x-3)}{x-3}\)
\(\lim\limits_{x \to 3} (2x + 7) = 2(3) + 7 = 13\)
Which of the following vectors is perpendicular to \(\begin{pmatrix} -1 & 3 \end{pmatrix}\)?...
Given that \(\frac{8x+m}{x^2-3x-4} ≡ \frac{5}{x+1} + \frac{3}{x-4}\)...
The functions f:x → 2x\(^2\) + 3x -7 and g:x →5x\(^2\) + 7x - 6 are defined on the se...
Find the range of values of x for which \(2x^{2} + 7x - 15 > 0\)....
Find an expression for y given that \(\frac{\mathrm d y}{\mathrm d x} = x^{2}\sqrt{x}\)...
Three forces \(F_{1} = (8 N, 300°), F_{2} = (6 N, 090°)\) and \(F_{3} = (4 N, 180°)\) ac...