4.75
4.00
1.75
1.00
Correct answer is B
\(\log_{2}(12x - 10) = 1 + \log_{2}(4x + 3)\)
Recall, \( 1 = \log_{2}2\), so
\(\log_{2}(12x - 10) = \log_{2}2 + \log_{2}(4x + 3)\)
= \(\log_{2}(12x - 10) = \log_{2}(2(4x + 3))\)
\(\implies (12x - 10) = 2(4x + 3) \therefore 12x - 10 = 8x + 6\)
\(12x - 8x = 4x = 6 + 10 = 16 \implies x = 4\)
A function is defined by \(f(x) = \frac{3x + 1}{x^{2} - 1}, x \neq \pm 1\). Find f(-3)....
Evaluate \(\int_{-1}^{0} (x+1)(x-2) \mathrm{d}x\)...
If 2y\(^2\) + 7 = 3y - xy, find \(\frac{dy}{dx}\)...
Simplify \(\sqrt{(\frac{-1}{64})^{\frac{-2}{3}}}\)...
Given that \(y = 4 - 9x\) and \(\Delta x = 0.1\), calculate \(\Delta y\)....
Given that \(f(x) = 5x^{2} - 4x + 3\), find the coordinates of the point where the gradient is 6....