\(7\sqrt{3} - \frac{17\sqrt{2}}{3}\)
\(7\sqrt{2} - \frac{17\sqrt{3}}{3}\)
\(-7\sqrt{2} + \frac{17\sqrt{3}}{3}\)
\(-7\sqrt{3} - \frac{17\sqrt{2}}{3}\)
Correct answer is B
Given \(\frac{8 - 3\sqrt{6}}{2\sqrt{3} + 3\sqrt{2}}\),
first, we rationalise by multiplying through with \(2\sqrt{3} - 3\sqrt{2}\) (the inverse of the denominator).
\((\frac{8 - 3\sqrt{6}}{2\sqrt{3} + 3\sqrt{2}})(\frac{2\sqrt{3} - 3\sqrt{2}}{2\sqrt{3} - 3\sqrt{2}})\)
= \(\frac{16\sqrt{3} - 24\sqrt{2} - 18\sqrt{2} + 18\sqrt{3}}{4(3) - 6\sqrt{6} + 6\sqrt{6} - 9(2)}\)
= \(\frac{34\sqrt{3} - 42\sqrt{2}}{-6} = 7\sqrt{2} - \frac{17\sqrt{3}}{3}\)
Given that \(\log_{3}(x - y) = 1\) and \(\log_{3}(2x + y) = 2\), find the value of x...
Find the fourth term in the expansion of \((3x - y)^{6}\)....
Find the equation to the circle \(x^{2} + y^{2} - 4x - 2y = 0\) at the point (1, 3)....
If \(8^{x} ÷ (\frac{1}{4})^{y} = 1\) and \(\log_{2}(x - 2y) = 1\), find the value of (x ...
Solve for x in the equation \(5^{x} \times 5^{x + 1} = 25\)...
If \(\log_{3} x = \log_{9} 3\), find the value of x....
P and Q are the points (3, 1) and (7, 4) respectively. Find the unit vector along PQ. ...