\(7\sqrt{3} - \frac{17\sqrt{2}}{3}\)
\(7\sqrt{2} - \frac{17\sqrt{3}}{3}\)
\(-7\sqrt{2} + \frac{17\sqrt{3}}{3}\)
\(-7\sqrt{3} - \frac{17\sqrt{2}}{3}\)
Correct answer is B
Given \(\frac{8 - 3\sqrt{6}}{2\sqrt{3} + 3\sqrt{2}}\),
first, we rationalise by multiplying through with \(2\sqrt{3} - 3\sqrt{2}\) (the inverse of the denominator).
\((\frac{8 - 3\sqrt{6}}{2\sqrt{3} + 3\sqrt{2}})(\frac{2\sqrt{3} - 3\sqrt{2}}{2\sqrt{3} - 3\sqrt{2}})\)
= \(\frac{16\sqrt{3} - 24\sqrt{2} - 18\sqrt{2} + 18\sqrt{3}}{4(3) - 6\sqrt{6} + 6\sqrt{6} - 9(2)}\)
= \(\frac{34\sqrt{3} - 42\sqrt{2}}{-6} = 7\sqrt{2} - \frac{17\sqrt{3}}{3}\)
Calculate, correct to one decimal place, the angle between 5 i + 12 j and -2 i + 3 j ...
If \(4x^{2} + 5kx + 10\) is a perfect square, find the value of k...
Find the gradient to the normal of the curve \(y = x^{3} - x^{2}\) at the point where x = 2....
If \(h(x) = x^{3} - \frac{1}{x^{3}}\), evaluate \(h(a) - h(\frac{1}{a})\)...
Given the statements: p : the subject is difficult q : I will do my best Which of the follo...