2y - x -5 = 0
2y + x - 5 = 0
2y + x + 5 = 0
2y - x + 5 = 0
Correct answer is A
We are given the equation \(x^{2} + y^{2} - 4x - 2y = 0\)
\(y = x^{2} + y^{2} - 4x - 2y \)
Using the method of implicit differentiation,
\(\frac{\mathrm d y}{\mathrm d x} = 2x + 2y\frac{\mathrm d y}{\mathrm d x} - 4 - 2\frac{\mathrm d y}{\mathrm d x}\)
For the tangent, \(\frac{\mathrm d y}{\mathrm d x} = 0\),
\(\therefore 2x + 2y\frac{\mathrm d y}{\mathrm d x} - 4 - 2\frac{\mathrm d y}{\mathrm d x} = 0\)
\((2y - 2)\frac{\mathrm d y}{\mathrm d x} = 4 - 2x \implies \frac{\mathrm d y}{\mathrm d x} = \frac{4 - 2x}{2y - 2}\)
At (1, 3), \(\frac{\mathrm d y}{\mathrm d x} = \frac{4 - 2(1)}{2(3) - 2} = \frac{2}{4} = \frac{1}{2}\)
Equation: \(\frac{y - 3}{x - 1} = \frac{1}{2} \implies 2y - 6 = x - 1\)
= \(2y - x - 6 + 1 = 2y - x - 5 = 0\)
If g(x) = √(1-x\(^2\)), find the domain of g(x)...
(\(\frac{3√6}{√5} + \frac{√54}{3√5}\))\(^{-1}\)...
If a fair coin is tossed four times, what is the probability of obtaining at least one head? ...
The function \(f : F \to R\) = \(f(x) = \begin{cases} 3x + 2 : x > 4 \\ 3x - 2 : x = 4 \\ ...
\(Simplify: \frac{log √27 - log √8}{log 3 - log 2}\)...
The inverse of a function is given by \(f^{-1} : x \to \frac{x + 1}{4}\)....
If \(2\log_{4} 2 = x + 1\), find the value of x....
In which of the following series can be the formula S = \(\frac{a}{1 - r}\) where a is the firs...