4
3
\(\frac{1}{3}\)
\(\frac{1}{4}\)
Correct answer is B
When you have two lines, \(y_{1}, y_{2}\), perpendicular to each other, the product of their slopes = -1.
\(3x + 4y + 6 = 0 \implies 4y = -6 - 3x\)
\(\therefore y = \frac{-6}{4} - \frac{3}{4}x\)
\(\frac{\mathrm d y}{\mathrm d x} = \frac{-3}{4}\)
Also, \(4x - by + 3 = 0 \implies by = 4x + 3\)
\(y = \frac{4}{b}x + \frac{3}{b}\)
\(\frac{\mathrm d y}{\mathrm d x} = \frac{4}{b}\)
\(\frac{-3}{4} \times \frac{4}{b} = -1 \implies \frac{4}{b} = \frac{4}{3}\)
\(b = 3\)
Express \(\frac{x^{2} + x + 4}{(1 - x)(x^{2} + 1)}\) in partial fractions....
Given that \(\tan x = \frac{5}{12}\), and \(\tan y = \frac{3}{4}\), Find \(\tan (x + y)\)....
Given that \(P = \begin{pmatrix} 3 & 4 \\ 2 & x \end{pmatrix}; Q = \begin{pmatrix} 1 & 3...
Forces \(F_{1} = (8N, 030°)\) and \(F_{2} = (10N, 150°)\) act on a particle. Find the horizo...
In how many ways can six persons be paired? ...
If \(log_{10}(3x+1) + log_{10}4 = log_{10}(9x+2)\), find the value of x ...
Find the derivative of \(\sqrt[3]{(3x^{3} + 1}\) with respect to x....
Evaluate \(\int^1_0 x(x^2-2)^2 dx\)...
Evaluate \(\frac{\tan 120° + \tan 30°}{\tan 120° - \tan 60°}\)...
P, Q, R, S are points in a plane such that PQ = 8i - 5j, QR = 5i + 7j, RS = 7i + 3j and PS = x...