5
\(\frac{1}{2}\sqrt{15}\)
\(\frac{1}{2}\sqrt{85}\)
\(\sqrt{85}\)
Correct answer is C
The equation of a circle is given as \((x - a)^{2} + (y - b)^{2} = r^{2}\).
Expanding, we have: \(x^{2} - 2ax + a^{2} + y^{2} - 2by + b^{2} = r^{2}\)
\(x^{2} + y^{2} - 2ax - 2by + a^{2} + b^{2} = r^{2}\)
Comparing with the equation, \(x^{2} + y^{2} - 8x + 9y = -15\), we have
\(2a = 8; 2b = -9; r^{2} - a^{2} - b^{2} = -15\)
\(a = 4; b = \frac{-9}{2}\)
\(\therefore r^{2} = -15 + 4^{2} + (\frac{-9}{2})^{2}\)
= \(-15 + 16 + \frac{81}{4} = \frac{85}{4}\)
\(r = \sqrt{\frac{85}{4} = \frac{1}{2}\sqrt{85}\)
If \(\begin{vmatrix} 3 & x \\ 2 & x - 2 \end{vmatrix} = -2\), find the value of x....
Given that \(\frac{1}{8^{2y - 3y}} = 2^{y + 2}\)....
Given that \(\frac{2x}{(x + 6)(x + 3)} = \frac{P}{x + 6} + \frac{Q}{x + 3}\), find P and Q....
Express the force F = (8 N, 150°) in the form (a i + b j) where a and b are constants ...
Evaluate \(4p_2 + 4C_2 - 4p_3\)...
Given that \(\sin x = \frac{-\sqrt{3}}{2}\) and \(\cos x > 0\), find x...
Solve \(x^{2} - 2x - 8 > 0\)....
\(f(x) = p + qx\), where p and q are constants. If f(1) = 7 and f(5) = 19, find f(3)....