300°
240°
120°
60°
Correct answer is A
In order to do this, simply find the option in the range where only the cos is +ve. This occurs in the range \(270° \leq x \leq 360°\).
Check: \(\sin 300 = - \sin 60 = \frac{-\sqrt{3}}{2}\)
\(\cos 300 = \cos 60 = \frac{1}{2}\)
Given that \(f '(x) = 3x^{2} - 6x + 1\) and f(3) = 5, find f(x)....
The function \(f : F \to R\) = \(f(x) = \begin{cases} 3x + 2 : x > 4 \\ 3x - 2 : x = 4 \\ ...
Forces \(F_{1} = (8N, 030°)\) and \(F_{2} = (10N, 150°)\) act on a particle. Find the horizo...
Simplify \((216)^{-\frac{2}{3}} \times (0.16)^{-\frac{3}{2}}\)...
Find \(\lim\limits_{x \to 3} (\frac{x^{3} + x^{2} - 12x}{x^{2} - 9})\)...
Given that \(r = 3i + 4j\) and \(t = -5i + 12j\), find the acute angle between them....
Solve; \(\frac{P}{2} + \frac{k}{3}\) = 5 and 2p = k = 6 simultaneously...