\(\sqrt{3 + 2}\)
\(\sqrt{3 + 1}\)
\(\sqrt{3 - 1}\)
\(\sqrt{3 - 2}\)
Correct answer is D
Tan 75\(^o\) = Tan (45\(^o\) + 30\(^o\))
= \(\frac{\tan 45^o + \tan 30^o}{1 - \tan 45^o \tan 30^o}\)
= \(\frac{\sqrt{3} + 1}{\sqrt{3} - 1}\)
RATIONALIZE THE DENOMINATOR
= \(\frac{\sqrt{3} + 1}{\sqrt{3} - 1}\) X \(\frac{\sqrt{3} + 1}{\sqrt{3} +1}\)
= \(\frac{4 + 2\sqrt{3}}{3 - 1}\)
= \(\frac{2(2 + \sqrt{3})}{2}\)
= 2 + \(\sqrt{3}\)
Find the range of values of x for which 2x\(^2\) + 7x - 15 ≥ 0....
If \(\sqrt{x} + \sqrt{x + 1} = \sqrt{2x + 1}\), find the possible values of x....
Consider the following statements: X: Benita is polite y: Benita is neat z: Benita is intel...
Solve \(3^{2x} - 3^{x+2} = 3^{x+1} - 27\)...
If \(\frac{1}{5^{-y}} = 25(5^{4-2y})\), find the value of y....
Find the derivative of \(3x^{2} + \frac{1}{x^{2}}\)...
Express \(\frac{2}{3 - \sqrt{7}} \text{ in the form} a + \sqrt{b}\), where a and b are integers....