1 and -1
-1 and 2
1 and 2
0 and -1
Correct answer is D
\(\sqrt{x} + \sqrt{x + 1} = \sqrt{2x + 1}\)
Squaring both sides, we have
\((\sqrt{x} + \sqrt{x + 1})^{2} = (\sqrt{2x + 1})^{2}\)
\(x + 2\sqrt{x(x + 1)} + x + 1 = 2x + 1\)
\(2x + 1 + 2\sqrt{x(x+1)} - (2x + 1) = 0\)
\((2\sqrt{x(x + 1)})^{2}= 0^{2} \implies 4(x(x + 1)) = 0\)
\(\therefore x(x + 1) = 0\)
\(x = \text{0 or -1}\)
Find the value of the derivative of y = 3x\(^2\) (2x +1) with respect to x at the point x = 2. ...
Consider the following statements: X: Benita is polite y: Benita is neat z: Benita is intel...
If \(\begin{vmatrix} k & k \\ 4 & k \end{vmatrix} + \begin{vmatrix} 2 & 3 \\...
If \(2\sin^{2}\theta = 1 + \cos \theta, 0° \leq \theta \leq 90°\), find \(\theta\)...
Calculate, correct to one decimal place, the angle between 5 i + 12 j and -2 i + 3 j ...
Simplify ( \(\frac{1}{2 - √3}\) + \(\frac{2}{2 + √3}\) )\(^{-1}\)...
Three forces, F\(_1\) (8N, 030°), F\(_\2) (10N, 150° ) and F\(_\3) ( KN, 240° ...
Given that \(p = \begin{bmatrix} x&4\\3&7\end{bmatrix} Q =\begin{bmatrix} x&3\\1&2x\...
Find the fourth term of the binomial expansion of \((x - k)^{5}\) in descending powers of x....