-11
-9
-3
4
Correct answer is C
Using the remainder theorem, the remainder when a polynomial \(ax^{2} + bx + c\) is divided by \((x - a)\) is equal to \(f(a)\).
\(2x^{3} + 3x^{2} + qx - 1\) divided by \((x + 2)\), the remainder = \(f(-2)\)
\(\implies f(-2) = f(1)\)
\(f(-2) = 2(-2^{3}) + 3(-2^{2}) + q(-2) - 1 = -16 + 12 - 2q - 1 = -5 - 2q\)
\(f(1) = 2(1^{3}) + 3(1^{2}) + q(1) - 1 = 2 + 3 + q - 1 = 4 + q\)
\(4 + q = -5 -2q \implies 4 + 5 = -2q - q = -3q\)
\(q = -3\)
If \(T = \begin{pmatrix} -2 & -5 \\ 3 & 8 \end{pmatrix}\), find \(T^{-1}\), the inverse of T...
The functions f:x → 2x\(^2\) + 3x -7 and g:x →5x\(^2\) + 7x - 6 are defined on the se...
Find the area of the circle whose equation is given as \(x^{2} + y^{2} - 4x + 8y + 11 = 0\)...
Solve: 4sin\(^2\)θ + 1 = 2, where 0º < θ < 180º...
Simplify \(8^{n} \times 2^{2n} \div 4^{3n}\)...
Find the range of values of x for which \(2x^{2} + 7x - 15 > 0\)....
If \(P = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}\) and \(Q = \begin{pmatrix} -2 & ...