\(\sin^{2} \theta\)
\(\sec^{2} \theta\)
\(\tan^{2} \theta\)
\(\cos^{2} \theta\)
Correct answer is D
\((1 + \sin \theta)(1 - \sin \theta) = 1 - \sin \theta + \sin \theta - \sin^{2} \theta\)
\(= 1 - \sin^{2} \theta\)
Recall, \(\cos^{2} \theta + \sin^{2} \theta = 1\)
\(\therefore 1 - \sin^{2} \theta = \cos^{2} \theta\).
If \(f(x) = \frac{1}{2 - x}, x \neq 2\), find \(f^{-1}(-\frac{1}{2})\)....
Solve: \(\sin \theta = \tan \theta\)...
Given that \(^{n}P_{r} = 90\) and \(^{n}C_{r} = 15\), find the value of r....
Given that M = \(\begin{pmatrix} 3 & 2 \\ -1 & 4 \end{pmatrix}\) and N = ...
Differentiate \(\frac{5x^ 3+x^2}{x}\), x ≠ 0 with respect to x....
If \(\frac{^{8}P_{x}}{^{8}C_{x}} = 6\), find the value of x....