\(-1\frac{1}{2}\)
\(-\frac{15}{16}\)
\(\frac{15}{16}\)
\(1\frac{1}{2}\)
Correct answer is D
\(\int \frac{4}{x^{3}} \mathrm {d} x = \int 4x^{-3} \mathrm {d} x\)
\(\frac{4x^{-3 + 1}}{-2} = -2x^{-2}|_{1}^{2} = \frac{-2}{x^{2}}|_{1}^{2}\)
= \(\frac{-2}{2^{2}} - \frac{-2}{1^{2}} = -\frac{1}{2} + 2 = 1\frac{1}{2}\)
Simplify; \(\frac{\sqrt{5} + 3}{4 - \sqrt{10}}\) ...
If \(\frac{6x + k}{2x^2 + 7x - 15}\) = \(\frac{4}{x + 5} - \frac{2}{2x - 3}\). Find the value ...
Find the area between line y = x + 1 and the x-axis from x = -2 to x = 0. ...
Find the minimum value of \(y = 3x^{2} - x - 6\)....
Differentiate \(\frac{x}{x + 1}\) with respect to x. ...
Find the fourth term of the binomial expansion of \((x - k)^{5}\) in descending powers of x....
Find the coefficient of \(x^{4}\) in the expansion of \((1-2x)^{6}\)...
Given that 2x + 3y - 10 and 3x = 2y - 11, calculate the value of (x - y). ...