58°
72°
74°
87°
Correct answer is B
\(a . b = |a||b| \cos \theta\)
\(\begin{pmatrix} 13 \\ 1 \end{pmatrix}. \begin{pmatrix} 1 \\ 4 \end{pmatrix} = 13 \times 1 + 1 \times 4 = 13 + 4 = 17\)
\(17 = (\sqrt{13^{2} + 1^{2}})(\sqrt{1^{2} + 4^{2}}) \cos \theta\)
\(17 = (\sqrt{170})(\sqrt{17}) \cos \theta\)
\(\cos \theta = \frac{17}{17\sqrt{10}} = \frac{\sqrt{10}}{10} = 0.3162\)
\(\theta = \cos^{-1} 0.3162 = 72°\)
The table shows the distribution of marks obtained by some students in a test Marks 0-9 10-...
If y = (5 - x)\(^{-3}\), and \(\frac{dy}{dx}\)...
If 2y\(^2\) + 7 = 3y - xy, find \(\frac{dy}{dx}\)...
A linear transformation on the oxy plane is defined by \(P : (x, y) → (2x + y, -2y)\). Find \(P...