The gradient of a function at any point (x,y) 2x - 6. If ...
The gradient of a function at any point (x,y) 2x - 6. If the function passes through (1,2), find the function.
x\(^2\) - 6x - 5
x\(^2\) - 6x + 5
x\(^2\) - 6x - 3
x\(^2\) - 6x + 7
Correct answer is D
dy/dx = 2x - 6
y = ∫ 2x - 6
y = \(\frac{2x^2}{2} - 6 + c\)
y = x\(^2\) - 6x + c
passes through (1,2)
2 = 1\(^2\) - 6(1) + c
2 = 1 - 6 + c
c = 7
y = x\(^2\) - 6x + c
y = x\(^2\) - 6x + 7
Simplify; \(\frac{\sqrt{5} + 3}{4 - \sqrt{10}}\) ...
Given that f: x --> x\(^2\) - x + 1 is defined on the Set Q = { x : 0 ≤ x < 20, x...
Calculate the mean deviation of 5, 8, 2, 9 and 6 ...
Find \(\int \frac{x^{3} + 5x + 1}{x^{3}} \mathrm {d} x\)...