-21
-12
-6
-3
Correct answer is A
\(y = x^{2} + 6x - 12\)
\(\frac{\mathrm d y}{\mathrm d x} = 2x + 6 = 0\)
\(2x = -6 \implies x = -3\)
\(y(-3) = (-3)^{2} + 6(-3) - 12 = 9 - 18 - 12 = -21\)
The table shows the mark obtained by students in a test. Marks 1 2 3 4 5 Frequency ...
Given that \(P = \begin{pmatrix} 4 & 9 \end{pmatrix}\) and \(Q = \begin{pmatrix} -1 & -2 \\ ...
Resolve \(\frac{3x - 1}{(x - 2)^{2}}, x \neq 2\) into partial fractions....
If √5 cosx + √15sinx = 0, for 0° < x < 360°, find the values of x. ...
Evaluate \(\int_{-1}^{0} (x+1)(x-2) \mathrm{d}x\)...
A straight line 2x+3y=6, passes through the point (-1,2). Find the equation of the line. ...