Given that M is the midpoint of T (2, 4) and Q (-8, 6), f...
Given that M is the midpoint of T (2, 4) and Q (-8, 6), find the length of MQ .
\(√26 units\)
\(√28 units\)
\(√24 units\)
\(√30 units\)
Correct answer is A
\(|MQ| = \frac{1}{2} |TQ|\)
\(|TQ| = √((y2 - y1)^2 + (x2 - x1)^2)\)
\(|TQ| = √((6 - 4)^2 + (-8 - 2)^2)\)
\(|TQ| = √(2^2 + (-10)^2)\)
\(|TQ| = √(4 + 100) = √104\)
\(|TQ| = 2√26 units\)
\(|MQ| = \frac{1}{2} |TQ| = 2 \times 2√26\)
∴ \(|MQ| = √26 units\)
If \(\frac{5}{\sqrt{2}} - \frac{\sqrt{8}}{8} = m\sqrt{2}\), where m is a constant. Find m....
Express \(\frac{2}{3 - \sqrt{7}} \text{ in the form} a + \sqrt{b}\), where a and b are integers....
Which of the following vectors is perpendicular to \(\begin{pmatrix} -1 & 3 \end{pmatrix}\)?...
Evaluate \(\int^0_0 \sqrt{x} dx\)...
Evaluate \(\begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix}...
If P = \(\begin {pmatrix} 2 & 3\\ -4 & 1 \end {pmatrix}\), Q = \(\begin{pmat...
Find the area between line y = x + 1 and the x-axis from x = -2 to x = 0. ...