\((\frac{15}{2}, -\frac{25}{2})\)
\((\frac{3}{2}, -\frac{5}{2})\)
\((-\frac{3}{2}, \frac{5}{2})\)
\((-\frac{15}{2}, \frac{25}{2})\)
Correct answer is B
Equation for a circle: \((x - a)^{2} + (y - b)^{2} = r^{2}\)
Expanding, we have:
\(x^{2} - 2ax + a^{2} + y^{2} - 2by + b^{2} = r^{2}\)
Given: \(5x^{2} + 5y^{2} - 15x + 25y - 3 = 0\)
Divide through by 5,
\(= x^{2} + y^{2} - 3x + 5y - \frac{3}{5} = 0\)
Comparing, we have
\(- 2a = -3; a = \frac{3}{2}\)
\(-2b = 5; b = -\frac{5}{2}\)
If \(\frac{1}{5^{-y}} = 25(5^{4-2y})\), find the value of y....
If \(y = 4x - 1\), list the range of the domain \({-2 \leq x \leq 2}\), where x is an integer....
Express 75° in radians, leaving your answer in terms of \(\pi\)....
If \(log_{y}\frac{1}{8}\) = 3, find the value of y....
Express \(\frac{2}{3 - \sqrt{7}} \text{ in the form} a + \sqrt{b}\), where a and b are integers....
If \(h(x) = x^{3} - \frac{1}{x^{3}}\), evaluate \(h(a) - h(\frac{1}{a})\)...
Given that \(\frac{\mathrm d y}{\mathrm d x} = \sqrt{x}\), find y....
Evaluate \(\int_{1}^{2} (2 + 2x - 3x^{2}) \mathrm {d} x\)....
For what value of k is 4x\(^2\) - 12x + k, a perfect square?...