\(2x^{\frac{3}{2}} + c\)
\(\frac{2}{3}x^{\frac{3}{2}} + c\)
\(\frac{3}{2}x^{\frac{3}{2}} + c\)
\(\frac{2}{3}x^{2} + c\)
Correct answer is B
\(\frac{\mathrm d y}{\mathrm d x} = \sqrt{x} = x^{\frac{1}{2}}\)
\(y = \int x^{\frac{1}{2}} \mathrm {d} x\)
= \(\frac{x^{\frac{1}{2} + 1}}{\frac{1}{2} + 1} + c = \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + c \)
= \(\frac{2}{3}x^{\frac{3}{2}} + c\)
Express \(\frac{1}{1 - \sin 45°}\) in surd form. ...
Find the value of the constant k for which \(a = 4 i - k j\) and \(b = 3 i + 8 j\) are perpendi...
A stone is thrown vertically upward and distance, S metres after t seconds is given by S = 12t ...
Find the remainder when \(5x^{3} + 2x^{2} - 7x - 5\) is divided by (x - 2)....