-2
-\(\frac{1}{2}\)
\(\frac{1}{2}\)
2
Correct answer is C
\(log_{y}\frac{1}{8} = 3 \implies y^{3} = \frac{1}{8}\) (Laws of logarithm)
\(y^{3} = \frac{1}{2^{3}} = (\frac{1}{2})^{3}\)
Equating both sides, we have
\(y = \frac{1}{2}\)
Find the coordinates of the centre of the circle 3x\(^2\) + 3y\(^2\) - 6x + 9y - 5 = 0...
Evaluate\({1_0^∫} x^2(x^3+2)^3\)...
Find \(\int \frac{x^{3} + 5x + 1}{x^{3}} \mathrm {d} x\)...
If \(log_{y}\frac{1}{8}\) = 3, find the value of y....
If \(\frac{5}{\sqrt{2}} - \frac{\sqrt{8}}{8} = m\sqrt{2}\), where m is a constant. Find m....
If \(\begin{vmatrix} k & k \\ 4 & k \end{vmatrix} + \begin{vmatrix} 2 & 3 \\...