\(\frac{1}{3}(x - \frac{1}{x})^{3} + c\)
\(\frac{x^{3}}{3} - x\sqrt{\frac{1}{x^{3}}} + c\)
\(\frac{x^{3}}{3} - 2x + \frac{1}{x^{3}} + c\)
\(\frac{x^3}{3} - 2x - \frac{1}{x} + c\)
Correct answer is D
\((x - \frac{1}{x})^{2} = x^2 - 2 + \frac{1}{x^2}\)
\(\int (x^2 + \frac{1}{x^2} - 2) \mathrm {d} x\)
= \(\int (x^2 + x^{-2} - 2) \mathrm {d} x\)
= \(\frac{x^3}{3} - 2x - \frac{1}{x}\)
Given that \(f(x) = 3x^{2} - 12x + 12\) and \(f(x) = 3\), find the values of x....
Find the value of \(\cos(60° + 45°)\) leaving your answer in surd form...
If \(\begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}\)\(\begin{pmatrix}...
Given that \(^{n}P_{r} = 90\) and \(^{n}C_{r} = 15\), find the value of r....
Rationalize; \(\frac{1}{\sqrt{2 + 1}}\)...
The midpoint of M(4, -1) and N(x, y) is P(3, -4). Find the coordinates of N. ...
Solve, correct to three significant figures, (0.3)\(^x\) = (0,5)\(^8\)...
Find the radius of the circle \(2x^2 + 2y^2 - 4x + 5y + 1 = 0\)...