| Marks | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| No of students | 5 | 7 | 9 | 6 | 3 | 6 | 4 |
The table above shows the distribution of marks by some candidates in a test. Find, correct to one decimal place, the mean of the distribution.
5.5
5.3
5.2
4.7
Correct answer is D
| Marks(\(x\) | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Total |
| Frequency \(f\) | 5 | 7 | 9 | 6 | 3 | 6 | 4 | 40 |
| \(fx\) | 10 | 21 | 36 | 30 | 18 | 42 | 32 | 189 |
Mean \(\bar{x} = \frac{\sum fx}{\sum f} = \frac{189}{40}\)
= \(4.725 \approxeq 4.7\)
If Un = kn\(^2\) + pn, U\(_1\) = -1, U\(_5\) = 15, find the values of k and p....
For what values of x is \(\frac{x^{2} - 9x + 18}{x^{2} + 2x - 35}\) undefined?...
Calculate the variance of \(\sqrt{2}\), (1 + \(\sqrt{2}\)) and (2 + \(\sqrt{2}\)) ...
Given that r = (10 N , 200º) and n = (16 N , 020º), find (3r - 2n). ...