| Marks |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
| No of students |
5 |
7 |
9 |
6 |
3 |
6 |
4 |
The table above shows the distribution of marks by some candidates in a test. Find, correct to one decimal place, the mean of the distribution.
| Marks(\(x\) |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
Total |
| Frequency \(f\) |
5 |
7 |
9 |
6 |
3 |
6 |
4 |
40 |
| \(fx\) |
10 |
21 |
36 |
30 |
18 |
42 |
32 |
189 |
Mean \(\bar{x} = \frac{\sum fx}{\sum f} = \frac{189}{40}\)
= \(4.725 \approxeq 4.7\)