Given that r = (10 N , 200º) and n = (16 N , 020&ord...
Given that r = (10 N , 200º) and n = (16 N , 020º), find (3r - 2n).
(62 N , 240º)
(62 N , 200º)
(62 N , 280º)
(62 N , 020º)
Correct answer is D
r = (10 N, 200º) and n = (16 N, 020º)
In rectangular form:
r = 10cos 200ºi + 10sin 200ºj = -9.397i - 3.420j
n = 16cos 20ºi + 16sin 20ºj = 15.035i + 5.472j
3r = -28.191i - 10.260j
2n = 30.070i + 10.945j
3r - 2n = (-28.191i - 10.260j) - (30.070i + 10.945j)
3r - 2n = -58.261i - 21.205j
|3r - 2n| = √((-58.261)\(^2\) + (-21.205)\(^2\)) = 62 N
\(tan θ =\frac{-21.205}{-58.261} = 0.3640\)
\(θ = tan^{-1} (0.3640) = 20^o\)
∴ (62 N , 020º)
Evaluate \(\frac{1}{1 - \sin 60°}\), leaving your answer in surd form....
Evaluate \(\int_{-1}^{0} (x+1)(x-2) \mathrm{d}x\)...
Evaluate \(\int_{-1}^{1} (x + 1)^{2}\mathrm {d} x\). ...
If \(x^{2} - kx + 9 = 0\) has equal roots, find the values of k....
Given that \(p = \begin{bmatrix} x&4\\3&7\end{bmatrix} Q =\begin{bmatrix} x&3\\1&2x\...
Solve: \(\sin \theta = \tan \theta\)...
Find the locus of points which is equidistant from P(4, 5) and Q(-6, -1). ...
If \(y = x^{3} - x^{2} - x + 6\), find the values of x at the turning point....