\(\frac{16}{33}\)
\(\frac{33}{56}\)
\(\frac{33}{16}\)
\(\frac{56}{33}\)
Correct answer is D
\(\tan (x + y) = \frac{\tan x + \tan y}{1 - \tan x\tan y}\)
\(\tan x = \frac{5}{12} ; \tan y = \frac{3}{4}\)
\(\tan (x + y) = \frac{\frac{5}{12} + \frac{3}{4}}{1 - (\frac{5}{12} \times \frac{3}{4}})\)
= \(\frac{\frac{14}{12}}{\frac{33}{48}}\)
= \(\frac{56}{33}\)
Given that F\(^1\)(x) = x\(^3\)√x, find f(x)...
Given that \(x * y = \frac{x + y}{2}, x \circ y = \frac{x^{2}}{y}\) and \((3 * b) \circ&nb...
If \(f(x) = \frac{4}{x} - 1, x \neq 0\), find \(f^{-1}(7)\)....
Find \(\lim\limits_{x \to 3} (\frac{x^{3} + x^{2} - 12x}{x^{2} - 9})\)...
Given that \(\frac{8x+m}{x^2-3x-4} ≡ \frac{5}{x+1} + \frac{3}{x-4}\)...
Find the median of the numbers 9,7, 5, 2, 12,9,9, 2, 10, 10, and 18. ...