8
6
5
4
Correct answer is C
\((x * y) = \frac{x+y}{2}\)
\((3 * b) = \frac{3+b}{2}\)
\(x \circ y = \frac{x^{2}}{y}\)
\((\frac{3+b}{2}) \circ 48 = \frac{(\frac{3+b}{2})^{2}}{48} = \frac{1}{3}\)
\(\frac{(3+b)^{2}}{48 \times 4} = \frac{1}{3}\)
\((3 + b)^{2} = \frac{48 \times 4}{3} = 64\)
\(b^{2} + 6b + 9 = 64 \implies b^{2} + 6b + 9 - 64 = 0\)
\(b^{2} + 6b - 55 = 0 \implies b^{2} - 5b + 11b - 55 = 0\)
\(b(b - 5) + 11(b - 5) = 0 \implies (b - 5) = \text{0 or (} b + 11) = 0\)
Since b > 0, b - 5 = 0
b = 5.
Find the coefficient of \(x^{3}\) in the expansion of \([\frac{1}{3}(2 + x)]^{6}\)...
Evaluate \(4p_2 + 4C_2 - 4p_3\)...
Find an expression for y given that \(\frac{\mathrm d y}{\mathrm d x} = x^{2}\sqrt{x}\)...
Solve \(x^{2} - 2x - 8 > 0\)....
Find the maximum value of \(2 + \sin (\theta + 25)\)....
Differentiate \(\frac{5x^{3} + x^{2}}{x}, x\neq 0\) with respect to x....
Given that \(\frac{\mathrm d y}{\mathrm d x} = \sqrt{x}\), find y....