18
6
-6
-18
Correct answer is C
\(4p_2 + 4C_2 - 4p_3\)
\(np_r = \frac{n!}{[n-r]!} and nC_r = \frac{n!}{[n-r]!r!} \)
= \(\frac{4!}{[4-2]!} + \frac{4!}{[4-2]!2!} - \frac{4!}{[4-3]!} = \frac{4!}{2!} + \frac{4!}{2!2!} - \frac{4!}{1!}\)
= \(\frac{4*3*2!}{2!} + \frac{4*3*2!}{2!2!} - \frac{4*3*2*1}{1!}\)
12 + 6 - 24 = -6
Given that \(P = \begin{pmatrix} -2 & 1 \\ 3 & 4 \end{pmatrix}\) and \(Q = \begin{pmatrix} 5...
Find the coefficient of \(x^{4}\) in the binomial expansion of \((1 - 2x)^{6}\)....
Given that \(3x + 4y + 6 = 0\) and \(4x - by + 3 = 0\) are perpendicular, find the value of b....
An exponential sequence (G.P.) is given by 8√2, 16√2, 32√2, ... . Find the n\(^{th...
Resolve \(\frac{3x - 1}{(x - 2)^{2}}, x \neq 2\) into partial fractions....
If \(P = \begin{pmatrix} 1 & 2 \\ 5 & 1 \end{pmatrix}\) and \(Q = \begin{pmatrix} 0 & 1 ...
In how many ways can the letters of the word MEMBER be arranged? ...